利用定积分求解
y=x²
y=x+2
x²=x+2
x²-x-2=0
x=2或x=-1
即两个曲线的交点是(2,4),(-1,1)
所以 S=∫[-1--->2] (x+2-x²)dx
=(-x³/3+x²/2+2x)|[-1---->2]
=(-8/3+2+4)-(1/3+1/2-2)
=10/3-(-7/6)
=27/6
=9/2
利用定积分求解
y=x²
y=x+2
x²=x+2
x²-x-2=0
x=2或x=-1
即两个曲线的交点是(2,4),(-1,1)
所以 S=∫[-1--->2] (x+2-x²)dx
=(-x³/3+x²/2+2x)|[-1---->2]
=(-8/3+2+4)-(1/3+1/2-2)
=10/3-(-7/6)
=27/6
=9/2