a•b=cos3x/2cosx/2-sin3x/2sinx/2
=cos(3x/2+x/2)
=cos2x
|a|=|b|=1
|a+b|²=|a|²+|b|²+2a•b=2+2cos2x=2+2(2cos²x-1)=4cos²x
|a+b|=2cosx
f(x)=a•b-4|a+b|
=cos2x-8cosx
=2cos²x-1-8cosx
=2cos²x-8cosx+8-9
=2(cosx-2)²-9
cosx∈[0,1]
cosx=1
f(x)min=-7
a•b=cos3x/2cosx/2-sin3x/2sinx/2
=cos(3x/2+x/2)
=cos2x
|a|=|b|=1
|a+b|²=|a|²+|b|²+2a•b=2+2cos2x=2+2(2cos²x-1)=4cos²x
|a+b|=2cosx
f(x)=a•b-4|a+b|
=cos2x-8cosx
=2cos²x-1-8cosx
=2cos²x-8cosx+8-9
=2(cosx-2)²-9
cosx∈[0,1]
cosx=1
f(x)min=-7