y=1/(1+√x)-1/(1-√x)
=(1-√x) /【(1+√x)(1-√x)】- (1+√x)/【(1+√x)(1-√x)】
=【(1-√x) - (1+√x)】/(1-x)
=2√x / (x-1)
∴y′=2×{0.5【x^(-0.5)】(x-1)— √x }/(x-1)²
={【x^(-0.5)】(x-1)— 2√x }/(x-1)²
=【(x-1)— 2x 】/【√x (x-1)²】
=-(x+1)/【√x (x-1)²】
y=1/(1+√x)-1/(1-√x)
=(1-√x) /【(1+√x)(1-√x)】- (1+√x)/【(1+√x)(1-√x)】
=【(1-√x) - (1+√x)】/(1-x)
=2√x / (x-1)
∴y′=2×{0.5【x^(-0.5)】(x-1)— √x }/(x-1)²
={【x^(-0.5)】(x-1)— 2√x }/(x-1)²
=【(x-1)— 2x 】/【√x (x-1)²】
=-(x+1)/【√x (x-1)²】