已知各项均不相等的等差数列{an}的前四项和为14,且a1,a3,a7恰为等比数列{bn}的前三项.

1个回答

  • 解题思路:(1)由已知条件推导出d=1,a1=2,由此求出an=n+1,

    S

    n

    =2n+

    n(n−1)

    2

    ×1

    =

    n

    2

    +3n

    2

    .由a1,a3,a7恰为等比数列{bn}的前三项,能求出

    b

    n

    2

    n

    T

    n

    2(1−

    2

    n

    )

    1−2

    =2n+1-2.

    (2)由anbn=(n+1)•2n,利用错位相减法求出

    K

    n

    =n•

    2

    n+1

    ,由不等式λSnTn≥Kn+n对一切n∈N*恒成立,得λ≥

    2

    n+1

    +1

    (n+3)(

    2

    n

    −1)

    ,设g(n)=

    2

    n+1

    +1

    (n+3)(

    2

    n

    −1)

    ,由数列的单调求出λ的最小值是[5/4].

    (1)由题意可知等差数列{an}的公差d≠0,

    S4=4a1+6d=14,

    2a1+3d=7,①

    ∵a1,a3,a7恰为等比数列{bn}的前三项.

    ∴a32=a1a7,∴(a1+2d)2=a1(a1+6d),

    整理,得a1=2d,②

    将②代入①中得:4d+3d=7,解得d=1,

    ∴a1=2,

    ∴an=2+(n-1)×1=n+1,

    Sn=2n+

    n(n−1)

    2×1=

    n2+3n

    2.

    ∵a1,a3,a7恰为等比数列{bn}的前三项,

    ∴b1=a1=1+1=2,

    b2=a3=3+1=4,

    ∴q=

    4

    2=2 ,

    ∴bn=2n,

    Tn=

    2(1−2n)

    1−2=2n+1-2.

    (2)∵anbn=(n+1)•2n

    ∴Kn=2•2+3•22+4•23+…+(n+1)•2n,①

    2Kn=2•22+3•23+4•24+…+(n+1)•2n+1,②

    ①-②,得-Kn=4+22+23+24+…+2n-(n+1)•2n+1

    =4+

    4(1−2n−1)

    1−2-(n+1)•2n+1

    =-n•2n+1

    ∴Kn=n•2n+1,

    ∵不等式λSnTn≥Kn+n对一切n∈N*恒成立,

    ∴λ•

    n2+3n

    2•(2n+1−2)≥n•2n+1+n,

    ∴λ≥

    2n+1+1

    (n+3)(2n−1),

    设g(n)=

    2n+1+1

    (n+3)(2n−1),

    g(n+1)

    g(n)=

    (n+3)(2n−1)(2n+2+1)

    (n+4)(2n+1−1)((2n+1+1)

    =

    (n+3)(22n+2−1−3•2n)

    (n+4)(22n+2−1)

    (n+3)(22n+2−1)

    (n+4)(2

    点评:

    本题考点: 数列的求和;数列与不等式的综合.

    考点点评: 本题考查数列的前n项和求法,考查实数的最小值的求法,解题时要注意错位相减法的合理运用.