解题思路:(1)由已知条件推导出d=1,a1=2,由此求出an=n+1,
S
n
=2n+
n(n−1)
2
×1
=
n
2
+3n
2
.由a1,a3,a7恰为等比数列{bn}的前三项,能求出
b
n
=
2
n
,
T
n
=
2(1−
2
n
)
1−2
=2n+1-2.
(2)由anbn=(n+1)•2n,利用错位相减法求出
K
n
=n•
2
n+1
,由不等式λSnTn≥Kn+n对一切n∈N*恒成立,得λ≥
2
n+1
+1
(n+3)(
2
n
−1)
,设g(n)=
2
n+1
+1
(n+3)(
2
n
−1)
,由数列的单调求出λ的最小值是[5/4].
(1)由题意可知等差数列{an}的公差d≠0,
S4=4a1+6d=14,
2a1+3d=7,①
∵a1,a3,a7恰为等比数列{bn}的前三项.
∴a32=a1a7,∴(a1+2d)2=a1(a1+6d),
整理,得a1=2d,②
将②代入①中得:4d+3d=7,解得d=1,
∴a1=2,
∴an=2+(n-1)×1=n+1,
Sn=2n+
n(n−1)
2×1=
n2+3n
2.
∵a1,a3,a7恰为等比数列{bn}的前三项,
∴b1=a1=1+1=2,
b2=a3=3+1=4,
∴q=
4
2=2 ,
∴bn=2n,
Tn=
2(1−2n)
1−2=2n+1-2.
(2)∵anbn=(n+1)•2n,
∴Kn=2•2+3•22+4•23+…+(n+1)•2n,①
2Kn=2•22+3•23+4•24+…+(n+1)•2n+1,②
①-②,得-Kn=4+22+23+24+…+2n-(n+1)•2n+1
=4+
4(1−2n−1)
1−2-(n+1)•2n+1
=-n•2n+1,
∴Kn=n•2n+1,
∵不等式λSnTn≥Kn+n对一切n∈N*恒成立,
∴λ•
n2+3n
2•(2n+1−2)≥n•2n+1+n,
∴λ≥
2n+1+1
(n+3)(2n−1),
设g(n)=
2n+1+1
(n+3)(2n−1),
∵
g(n+1)
g(n)=
(n+3)(2n−1)(2n+2+1)
(n+4)(2n+1−1)((2n+1+1)
=
(n+3)(22n+2−1−3•2n)
(n+4)(22n+2−1)
<
(n+3)(22n+2−1)
(n+4)(2
点评:
本题考点: 数列的求和;数列与不等式的综合.
考点点评: 本题考查数列的前n项和求法,考查实数的最小值的求法,解题时要注意错位相减法的合理运用.