∵log ax n+1=1+log ax n,∴log ax n+1-log ax n=1,
∴
log
x n+1
x n a =1,则
x n+1
x n =a,
∴数列{x n}是以a为公比的等比数列,
∵x 1+x 2+…+x 100=100,∴x 101+x 102+…+x 200=a 100x 1+a 100x 2+…a 100x 100
=a 100(x 1+x 2+…+x 100)=100a 100,
故答案为:100a 100.
∵log ax n+1=1+log ax n,∴log ax n+1-log ax n=1,
∴
log
x n+1
x n a =1,则
x n+1
x n =a,
∴数列{x n}是以a为公比的等比数列,
∵x 1+x 2+…+x 100=100,∴x 101+x 102+…+x 200=a 100x 1+a 100x 2+…a 100x 100
=a 100(x 1+x 2+…+x 100)=100a 100,
故答案为:100a 100.