an=f(n)-g(n)
a(n+1)=f(n+1)-g(n+1)
要证an递减
即证a(n+1)<an
a(n+1)-an=f(n+1)-g(n+1)-f(n)+g(n)
=1/(n+1)+lnn-ln(n+1)
令h(x)=1/(x+1)+lnx-ln(x+1),x≥1,h(1)=(1/2)-ln2<0
【因为e<4,即1<2ln2】
h‘(x)=-1/(x+1)²-1/x+1/(x+1)
=-(2x+1)/[x(x+1)²]<0
于是h(x)单调减,于是h(x)<h(1)<0
于是h(n)<0,即a(n+1)<an