解题思路:利用辅助线,连接AF,求出CF=AF,∠BAF=90°,再根据AB=AC,∠BAC=120°可求出∠B的度数,由直角三角形的性质即可求出BF=2AF=2CF.
证明:连接AF,(1分)∵AB=AC,∠BAC=120°,∴∠B=∠C=180°−120°2=30°,(1分)∵AC的垂直平分线EF交AC于点E,交BC于点F,∴CF=AF(线段垂直平分线上的点到线段两端点的距离相等),∴∠FAC=∠C=30°(等边对...
点评:
本题考点: 线段垂直平分线的性质.
考点点评: 本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等)有关知识,难度一般.