(√x+2/x)^n 二项式的展开式的通项为:
C(i,n) * (√x)^(n-i) * (2/x)^i = C(i,n) * 2^i * x^(n/2 - i/2 -i)
常数项为60,则
n/2 - i/2 - i = 0
n = 3i
C(i,n) * 2^i = 60
C(i,3i) * 2^i = 60
若 i=1 则上式左边 = C(1,3) * 2 = 6 ≠ 右边
若 i=2 则上式左边 = C(2,6) * 4 = 60 = 右边
所以 n = 3i = 6
(√x+2/x)^n 二项式的展开式的通项为:
C(i,n) * (√x)^(n-i) * (2/x)^i = C(i,n) * 2^i * x^(n/2 - i/2 -i)
常数项为60,则
n/2 - i/2 - i = 0
n = 3i
C(i,n) * 2^i = 60
C(i,3i) * 2^i = 60
若 i=1 则上式左边 = C(1,3) * 2 = 6 ≠ 右边
若 i=2 则上式左边 = C(2,6) * 4 = 60 = 右边
所以 n = 3i = 6