x>0 y>0 2009x^2=2010y^2
2009/2010=y^2/x^2
√2009x=√2010y
√2009/√2010=y/x
由已知√(2009x+2010y)=√2009+√2010,等式两边同除以√2010
√[(2009x/2010)+y]=√(2009/2010)+1
√[(y^2/x)+y]=y/x+1
√[y(x+y)/x]=(x+y)/x
√y=√(x+y)/x
y=(x+y)/x
(x+y)/xy=1
1/x+1/y=1
x>0 y>0 2009x^2=2010y^2
2009/2010=y^2/x^2
√2009x=√2010y
√2009/√2010=y/x
由已知√(2009x+2010y)=√2009+√2010,等式两边同除以√2010
√[(2009x/2010)+y]=√(2009/2010)+1
√[(y^2/x)+y]=y/x+1
√[y(x+y)/x]=(x+y)/x
√y=√(x+y)/x
y=(x+y)/x
(x+y)/xy=1
1/x+1/y=1