问学习之路团队一道数学题目我要问的是第8题Sn=b1b2-b2b3+b3b4 -…+(-1)^n-1bnbn+1.当n是

1个回答

  • ①当n为奇数时,

    Sn=b1b2-b2b3+b3b4-b4b5+…+(-1)^(n-1)bnbn+1

    =b1b2-b2b3+b3b4-b4b5+…+bnbn+1

    =b1b2+b3(b4-b2)+b5(b6-b4)+…+bn(bn+1-bn-1)

    =(1*5/3)+4(b3+b5+…+bn)

    =5/3+4*[7/3+(2n+1)/3]*(n-1)/2/2

    =5/3+(7+2n+1)(n-1)/3

    =5/3+(8+2n)(n-1)/3

    =5/3+(8n+2n^2-8-2n)/3

    =(2n^2+6n-3)/3

    ②当n为偶数时,

    b1b2-b2b3+b3b4-b4b5+…+(-1)^(n-1)bnbn+1

    =b2(b1-b3)+b4(b3-b5)+…+bn(bn-1-bn+1)

    =-4(b2+b4+…+bn)

    =-4*[5/3+(2n+1)/3]*n/2/2

    =-(5+2n+1)*n/3

    =-(2n^2+6n)/3