首先,对两式作差,得出a^2+b^2+ab+1-a-b,设函数
f(a)=a^2+ab-a+b^2+1-b=a^2+(b-1)a+b^2+1-b
此时,函数对应方程为a^2+(b-1)a+b^2+1-b=0的△=
(b-1)^2-4b^2+4b-4=-3b^2+2b-3
设函数g(b)=-3b^2+2b-3,并令g(b)=0,此时,关于这个方程的△=
4b^2-36b^2=-32b^2≤0,即函数g(b)≤0,也就是,关于方程f(a)的判别式小于零恒成立,并且,函数f(a)的开口方向向上,所以,可以得出
f(a)恒大于零.即有:a^2+b^2+ab+1>a+