此题可用反证法
证明:假设β1,β2,β3也线性相关
则 存在不全为0的k1,k2,k3使得 k1β1+k2β2+k3β3=0
得到k1α1+k2(α2+2α3)+k3(α1+2α2+3α3)=0
得到(k1+k3)α1+(k2+2k3)α2+(2k3+3k3)α3=0
k1,k2,k3不全为0 得到k1+k3,k2+2k3,2k3+3k3不全为0(反证法:假设k1+k3,k2+2k3,2k3+3k3全为0,则k1,k2,k3不全为0,与题意矛盾)
所以α1,α2,α3线性相关,与题意矛盾
所以β1,β2,β3线性无关