已知三点P(5,2),F1(-6,0),F2(6,0),1.求以F1,F2为焦点且过点P的椭圆的标准方程.
PF1=√125=5√5
PF2=√5
PF1+PF2=2a =6√5
a=3√5 c=6 b^2=a^2-c^2=9
椭圆的标准方程为 x^2/45+y^2/9=1
(2) 关于直线Y=X的对称点份额别为P' ,F1' ,F2'
则p'(2,5) F1'(0,-6) F2'(0,6)
P'F1'=√125=5√5
P'F'2=√5
P'F1-P'F'1=4√5 2a=4√5 a=2√5
c=6 a=2√5
b^2=c^2-a^2=36-20=16
过P'的双曲线的标准方程 y^2/20-x^2/16=1