(2013•青羊区一模)如图,抛物线y=ax2+bx+c与x轴有两个不同的交点A(x1,0)、B(x2,0)(x1<x2

1个回答

  • 解题思路:(1)因为抛物线y=ax2+bx+c与x轴有两个不同的交点A(x1,0),B(x2,0)(x1<x2),所以A和B关于抛物线的对称轴对称,于是

    x

    1

    +

    x

    2

    2

    =1①;又因为A、B两点间的距离为4,且x1<x2,所以x2-x1=4②,将①②组成方程组,解出x1,x2的值,再将点A、B、C的坐标代入y=ax2+bx+c,运用待定系数法即可求出抛物线的解析式;

    (2)根据三角形外心的定义可知MA=MB=MC,由MA=MB及A、B两点的坐标,得出圆心M的横坐标为1,设M(1,y),根据MA=MC列出方程,即可求出M的纵坐标;

    (3)设PD与BM的交点为E,分成两种情况考虑:①当△BPE的面积是△BDE的2倍时,由于△BDE和△BPD同高不等底,那么它们的面积比等于底边的比,即DE=[1/3]PD,可设出P点的坐标,那么E点的纵坐标是P点纵坐标的[1/3],BD的长为B、P横坐标差的绝对值,由于∠OBC=45°,那么BD=DE,可以此作为等量关系求出P点的坐标;②当△BDE的面积是△BPE的2倍时,方法同①.

    (1)∵抛物线y=ax2+bx+c与x轴有两个不同的交点A(x1,0)、B(x2,0)(x1<x2),且抛物线顶点的横坐标为1,

    x1+x2

    2=1,即x1+x2=2①;

    又∵A、B两点间的距离为4,且x1<x2

    ∴x2-x1=4②,

    ①与②组成方程组

    x1+x2=2

    x2−x1=4,

    解得

    x1=−1

    x2=3,

    ∴A(-1,0),B(3,0).

    把A(-1,0),B(3,0),C(0,3)代入y=ax2+bx+c,

    a−b+c=0

    9a+3b+c=0

    c=3,

    解得

    点评:

    本题考点: 二次函数综合题.

    考点点评: 此题是二次函数的综合类题目,其中涉及到运用待定系数法求函数的解析式,二次函数的性质,三角形的外心,两点间的距离公式以及图形面积的求法等知识,综合性强,难度稍大,(3)中进行分类讨论是解题的关键.