求f(x)=(sinxcosx)/(1+sinx+cosx)的递增区间?

1个回答

  • 令sinx+cosx=-1

    x=kπ/2

    先考虑一个周期内的情形

    x的定义域为[π/4,9π/4)-{kπ/2}

    令t=sinx+cosx=根号2 sin(x+π/4)

    因此

    当x属于[π/4,5π/4)-{kπ/2}时,t单调减

    当x属于[5π/4,5π/4)-{kπ/2}时,t单调增

    因为t^2=1+2sinxcosx,所以

    f(x)=(t^2-1)/(2+2t)=(t-1)/2

    关于f(x)关于t单调增

    因此在[π/4,9π/4)-{kπ/2}上,f(x)的单调增区间为

    (5π/4,3π/2),(3π/2,2π),(2π,9π/4)

    因此f(x)在定义域上的单调增区间为

    (5π/4+2kπ,3π/2+2kπ),(3π/2+2kπ,2π+2kπ),(2π+2kπ,9π/4+2kπ),k为任意整数