f(x)=x^2 求lim{f(x+h)-f(x)}/h h趋向于0
5个回答
lim[f(x+h)-f(x)]/h=德尔塔y/德尔塔x
即在x处的切线的斜率
即f'(x)=2x
Lim2x=2x
相关问题
f(x)在x处二阶可导,求lim{[f(x+h)-2f(x)+f(x-h)]/h^2},h趋向于0
f'(x)=-2,求limf(x+h)-f(x-h)/h(h趋向于0)
f(x+y)=f(x)+f(y)+2xy lim f(h)/h =0 h 趋向0 问f'(x) 和f(x)
设f(x)=√x,求limf(x+h)-f(x)/h (h趋向于0)
设f(x)=x^2,则当h趋向于0时,[f(1+2h)-f(1)]/h趋向于
证明lim( h→0)[f(x0 h) f(x0-h)-2f(x0)]/h2=f''(x0)
若f'(0)=2,求lim(h→0)f(x0-h)-f(x0)/2h的值
f(x)在X0处二阶可导,证lim(h->0)[ f(x-h0)+f(x0+h)-2f(x0)]/h^2=f``(x0)
f(x)在x_0处可导,求lim h→0 f(x_0+h)-f(x_0-h)/5h 的值
lim[√(h+x)-√x]/h h趋向于0