∵Sn=1/3(An-1)
∴Sn-1=1/3(An-1 -1)
∴An=Sn-Sn-1=1/3(An-1)-1/3(An-1 -1)
化简得2/3An=-1/3An-1
即An/An-1=-1/2=q
∴数列为等比数列
a1=1/3(a1-1)
a1=-1/2.
所以an=(-1/2)*(-1/2)^(n-1)
S10=(-1/2)*(1-(-1/2)^10)/(1+1/2)=341/1024
∵Sn=1/3(An-1)
∴Sn-1=1/3(An-1 -1)
∴An=Sn-Sn-1=1/3(An-1)-1/3(An-1 -1)
化简得2/3An=-1/3An-1
即An/An-1=-1/2=q
∴数列为等比数列
a1=1/3(a1-1)
a1=-1/2.
所以an=(-1/2)*(-1/2)^(n-1)
S10=(-1/2)*(1-(-1/2)^10)/(1+1/2)=341/1024