f(x) = 2a*b - 1 = 2*[√3(cosx)^2+(cosx)^2] - 1 = 2(√3+1)(cosx)^2 = (√3+1)(1+cos2x)
所以f(x)最小正周期T=pi
在(-pi/2+kpi,kpi)单增,在(kpi,kpi+pi/2)单减
(2)cosx=0
tanx=∞
cos2x/[f(x)+1]=-1/1=-1
f(x) = 2a*b - 1 = 2*[√3(cosx)^2+(cosx)^2] - 1 = 2(√3+1)(cosx)^2 = (√3+1)(1+cos2x)
所以f(x)最小正周期T=pi
在(-pi/2+kpi,kpi)单增,在(kpi,kpi+pi/2)单减
(2)cosx=0
tanx=∞
cos2x/[f(x)+1]=-1/1=-1