1、(-a+b+c)(a+b-c)
=b^2-(a-c)^2=b^2-a^2-c^2+2ac,
2、(x^2-x+2)(-x-2-x^2)
=(-x)^2-(x^2+2)^2=x^2-x^4-4x^2-4=-x^4-3x^2-4,
3、(a-2b+3c)(2b-a-3c)
=-(a-2b+3c)^2=-a^2-4b^2-9c^2+4ab-6ac+12bc.
1、(-a+b+c)(a+b-c)
=b^2-(a-c)^2=b^2-a^2-c^2+2ac,
2、(x^2-x+2)(-x-2-x^2)
=(-x)^2-(x^2+2)^2=x^2-x^4-4x^2-4=-x^4-3x^2-4,
3、(a-2b+3c)(2b-a-3c)
=-(a-2b+3c)^2=-a^2-4b^2-9c^2+4ab-6ac+12bc.