已知各项均为正数的数列{an}的前n项和为Sn,满足Sn=(an²+an)/2,(1)求a1,a2,a3的值;

1个回答

  • an>0

    n=1时

    S1=a1=(a1²+a1)/2

    ∴a1=1

    n>=2时

    S(n-1)=(a(n-1)²-a(n-1))/2

    an=Sn-S(n-1)

    ∴(an+a(n-1))(an-a(n-1)-1)=0

    an>0

    ∴an-a(n-1)=1

    ∴{an}是等差数列

    an=1+n-1=n

    a2=2,a3=3

    (3)

    (2^n)▪a1▪a2.an≥M√(2n+1)▪(2a1-1)▪(2a2-1).2(an-1)

    ∴M≤[(2^n)▪a1▪a2.an]/[√(2n+1)▪(2a1-1)▪(2a2-1).2(an-1)]

    设f(n)=[(2^n)▪a1▪a2.an]/[√(2n+1)▪(2a1-1)▪(2a2-1).2(an-1)]

    f(n+1)=[(2^(n+1)*1*2*3...*n*(n+1)]/[√(2n+3)*(1*3*5*.(2n-1)(2n+1)]

    f(n+1)/f(n)

    =(2n+2)/[√(2n+1)*√(2n+3)]

    =√[(4n^2+8n+4)/(4n^2+8n+3)]

    >1

    ∴f(n)是增函数

    ∴f(n)>=1=2√3/3

    ∴0