对e=1,存在X,当x1,x2>=X时,有|积分(x1到x2)f(x)dx|
证明微积分题目证明:+∞ A函数f(x)在[a,+∞]上的广义积分∫ f(x)dx存在,则对任意A≥a,|∫ f(x)d
2个回答
相关问题
-
设函数f(x)在对称区间【-a,a】上连续,证明∫(-a,a)f(x)dx=∫(0,a)[f(x)+f(-x)]dx
-
定积分证明设f(x)在〔a,b〕上连续,证明必存在ξ∈(a,b)使得(ξ-b)f(ξ)+∮(a,ξ)f(x)dx=0
-
零点个数的证明,追分设函数f(x)在[a,b]上连续,证明:1)若从a到b积分f(x)dx=0,则f(x)在(a,b)内
-
设函数f(x)为定义[-a,a]上的奇函数,证明:∫(-a->0)f(x)dx=-∫(0->a)f(x)dx
-
求定积分做法设f(x)在区间[a,b]上连续,且f(x)>0,证明在a到b的积分f(x)dx.dx/f(x)>=(b-a
-
1,证明f(x)(a,-a)的积分=f(-x)(a,-a)的积分 2,∫√(1-x)/x√(1+x)*dx
-
积分证明题目设f(x)在〔a,b〕上具有二阶导函数,且f’(x)
-
设函数f(x) 在区间( -a ,a)上连续,证明 f 上a 下 0 f(x)dx= f 上a 下 0 (f (x) +
-
周期函数的定积分证明如何证明周期函数的定积分与周期无关?即∫(a+j a)f(x)dx=∫(j 0)f(x)dx [a为
-
定积分证明证明:定积分 f(x^2+a^2/x^2)dx/x 积分限是1到a 等于定积分 f(x+a^2/x)dx/x