如图,在等腰三角形ABC中,AB=AC,AD是BC边上的中线,∠ABC的平分线BG,交AD于点E,EF⊥AB,垂足为F.

2个回答

  • 解题思路:根据等腰三角形三线合一,确定AD⊥BC,又因为EF⊥AB,然后根据角平分线上的点到角的两边的距离相等证出结论.

    证明:∵AB=AC,AD是BC边上的中线,

    ∴AD⊥BC.

    ∵BG平分∠ABC,EF⊥AB,

    ∴EF=ED.

    点评:

    本题考点: 等腰三角形的性质;角平分线的性质.

    考点点评: 此题考查了等腰三角形的性质和角平分线的性质;利用等腰三角形的三线合一得到AD⊥BC是正确解答本题的关键.