解题思路:要求这个长方形原来的面积,应先求这个长方形原来的长和宽,据条件可知:6×原来的宽=48,原来的长×4=48,由此便能求得原来的长和宽,进而就能求得这个长方形原来的面积.
原来的宽=48÷6=8(厘米);
原来的长=48÷4=12(厘米);
长方形的面积为12×8=96(平方厘米);
故答案为96.
点评:
本题考点: 长方形、正方形的面积.
考点点评: 本题主要考查长方形的面积公式及一个因数不变,另一个因数增加,则面积增加,再据题意,利用长方形的面积公式进行计算即可.
解题思路:要求这个长方形原来的面积,应先求这个长方形原来的长和宽,据条件可知:6×原来的宽=48,原来的长×4=48,由此便能求得原来的长和宽,进而就能求得这个长方形原来的面积.
原来的宽=48÷6=8(厘米);
原来的长=48÷4=12(厘米);
长方形的面积为12×8=96(平方厘米);
故答案为96.
点评:
本题考点: 长方形、正方形的面积.
考点点评: 本题主要考查长方形的面积公式及一个因数不变,另一个因数增加,则面积增加,再据题意,利用长方形的面积公式进行计算即可.