解题思路:着色部分的面积等于原来矩形的面积减去△ECF的面积,应先利用勾股定理求得FC的长,进而求得相关线段,代入求值即可.
在Rt△GFC中,有FC2-CG2=FG2,
∴FC2-22=(4-FC)2,
解得,FC=2.5,
∴阴影部分面积为:AB•AD-[1/2]FC•AD=[11/2],
故选B.
点评:
本题考点: 翻折变换(折叠问题).
考点点评: 折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,本题中没有着色的部分为△ECF,利用了矩形和三角形的面积公式,勾股定理求解.