(Ⅰ)因为a n=1+(n-1)d,则a 3=1+2d,a 7=1+6d,a 9=1+8d.(3分)
由已知, ( a 7 +2) 2 =a 3•3a 9,则(3+6d) 2=3(1+2d)(1+8d),即2d 2-d-1=0.(5分)
所以(2d+1)(d-1)=0.
因为d>0,则d=1,
故a n=n.(6分)
(Ⅱ)设S n=a 1+
a 2
2 +
a 3
2 2 +…+
a n
2 n-1 ,则S n=1+
2
2 +
3
2 2 +…+
n
2 n-1 ,
则
1
2 S n=
1
2 +
2
2 2 +…+
n
2 n .(8分)
两式相减得,
1
2 S n=1+
1
2 +
1
2 2 +
1
2 3 +…+
1
2 n-1 -
n
2 n =
1-
1
2 n
1-
1
2 -
n
2 n =2-
n+2
2 n .
所以S n=4-
n+2
2 n-1 .(12分)
因为
n+2
2 n-1 >0,则4-
n+2
2 n-1 <4,故a 1+
a 2
2 +
a 3
2 2 +…+
a n
2 n-1 <4.(13分)