a≤(e^x-1/2*x^2-3x-1)/x
令g(x)=(e^x-1/2*x^2-3x-1)/x
g'(x)=((x-1)e^x-1/2*x^2+1)
g"(x)=x(e^x-1)>0
故g'(x)=((x-1)e^x-1/2*x^2+1)单调递增
g'(0)=0
故g(x)=(e^x-1/2*x^2-3x-1)/x最小值为g(1/2)
a≤2e^1/2 - 21/4
a≤(e^x-1/2*x^2-3x-1)/x
令g(x)=(e^x-1/2*x^2-3x-1)/x
g'(x)=((x-1)e^x-1/2*x^2+1)
g"(x)=x(e^x-1)>0
故g'(x)=((x-1)e^x-1/2*x^2+1)单调递增
g'(0)=0
故g(x)=(e^x-1/2*x^2-3x-1)/x最小值为g(1/2)
a≤2e^1/2 - 21/4