证明:设数列{an}的前n项和Sn=an^2+bn(a,b是常数),
n=1时a1=S1=a+b,
n>1时an=Sn-S=an^2+bn-[a(n-1)^2+b(n-1)=a(2n-1)+b,
n=1时上式也成立,
∴a-an=2a,
∴{an}是等差数列.
证明:设数列{an}的前n项和Sn=an^2+bn(a,b是常数),
n=1时a1=S1=a+b,
n>1时an=Sn-S=an^2+bn-[a(n-1)^2+b(n-1)=a(2n-1)+b,
n=1时上式也成立,
∴a-an=2a,
∴{an}是等差数列.