(1)由函数的图象可得A=1,T=4×([7π/12]-[π/3])=π,
T=[2π/ω],
解得ω=2.
图象经过([π/3],0),0=sin(2×[π/3]+φ),|φ|<[π/2],φ=[π/3],
故f(x)的解析式为 f(x)=sin(2x+[π/3]).
(2)由2kπ+[π/2]≤2x+
π
3≤2kπ+[3π/2],k∈z,
可得 kπ+[π/12]≤x≤kπ+[7/12]π,k∈Z,
故函数y=sin(2x+
π
3)的单调递减区间是[kπ+[π/12]π,kπ+[7/12]π],k∈Z,
同理可得函数的单调增区间[kπ−
5π
12π,kπ+[π/12]π],k∈Z.