1、∵函数fx=Asin(2x+5π/6)(A>0.x∈R)的最小值为-2
∴A=2
即f(x)=2sin(2x+5π/6)
则f(0)=2sin(5π/6)=1
2、f(x)=2sin(2x+5π/6)
=2sin(2x+5π/6-2π)
=2sin(2x-7π/6)
=2sin(2x-2π/3-π/2)
=-2cos(2x-2π/3)
=-2cos2(x-π/3)
根据y=cosx图像特点可知:fime最小值为π/3
1、∵函数fx=Asin(2x+5π/6)(A>0.x∈R)的最小值为-2
∴A=2
即f(x)=2sin(2x+5π/6)
则f(0)=2sin(5π/6)=1
2、f(x)=2sin(2x+5π/6)
=2sin(2x+5π/6-2π)
=2sin(2x-7π/6)
=2sin(2x-2π/3-π/2)
=-2cos(2x-2π/3)
=-2cos2(x-π/3)
根据y=cosx图像特点可知:fime最小值为π/3