(1)
①证明:f′(x)=1/x-(b+2)/(x+1)²=(x²-bx+1)/(x(x+1)²)
令h(x)=1/(x(x+1)²),a=b
则f(x)具有性质P(a)
△=b²-4
∴当b∈(-2,2]时
f(x)在(1,+∞)上单调增
当b∈(-∞,-2]时
f(x)在(1,+∞)上单调增
当b∈(2,+∞)时
f(x)在(1,(b+√(b²-4))/2)上单调减,在((b+√(b²-4))/2,+∞)上单调增
综上:
当b∈(-∞,2]时
f(x)在(1,+∞)上单调增
当b∈(2,+∞)时
f(x)在(1,(b+√(b²-4))/2)上单调减,在((b+√(b²-4))/2,+∞)上单调增.
(2)思路与上面差不多,自己做一下吧.