分析:
(1)∵∠BAC=∠DAE,
∴∠BAE=∠CAD,
又∵AB=AC,AD=AE,
∴△BAE≌△CAD(SAS)
∴BE=CD(全等三角形对应边相等)
根据全等三角形对应边上的中线相等,可证△AMN是等腰三角形.
(2)利用(1)中的证明方法仍然可以得出(1)中的结论,思路不变.
(3)先证出△ABM≌△ACN(SAS)
可得出∠CAN=∠BAM
所以∠BAC=∠MAN(等角加等角和相等)
又∵∠BAC=∠DAE
所以∠MAN=∠DAE=∠BAC
所以△AMN,△ADE和△ABC都是顶角相等的等腰三角形
所以∠PBD=∠AMN
所以△PBD∽△AMN(两个角对应相等,两三角形相似).
证明:(1)①∵∠BAC=∠DAE∴∠BAE=∠CAD,
∵AB=AC,AD=AE,
∴△ABE≌△ACD,
∴BE=CD.
②由△ABE≌△ACD,得
∠ABE=∠ACD,BE=CD,
∵M、N分别是BE,CD的中点,
∴BM=CN.
又∵AB=AC,
∴△ABM≌△ACN.
∴AM=AN,即△AMN为等腰三角形.
(2)(1)中的两个结论仍然成立.
(3)在图②中正确画出线段PD,
由(1)同理可证△ABM≌△ACN,
∴∠CAN=∠BAM∴∠BAC=∠MAN.
又∵∠BAC=∠DAE,
∴∠MAN=∠DAE=∠BAC.
∴△AMN,△ADE和△ABC都是顶角相等的等腰三角形.
∴∠PBD=∠AMN,
∴△PBD∽△AMN.
点评:本题利用了全等三角形的判定和性质,以及等腰三角形一个顶角相等,则底角相等的性质,还有相似三角形的判定(两个角对应相等的两个三角形相似).