∫(1-arcsinx)/√(1-x^2) dx
let
x=siny
dx =cosydy
∫(1-arcsinx)/√(1-x^2) dx
=∫(1-y) dy
=y - (1/2)y^2 + C
=arcsinx - (1/2)[arcsinx]^2 + C
∫(1-arcsinx)/√(1-x^2) dx
let
x=siny
dx =cosydy
∫(1-arcsinx)/√(1-x^2) dx
=∫(1-y) dy
=y - (1/2)y^2 + C
=arcsinx - (1/2)[arcsinx]^2 + C