y=sin(x/2)+√3cos(x/2)
=2[1/2sin(x/2)+√3/2 cos(x/2)]
=2[cos(π/3)sin(x/2)+sin(π/3)cos(x/2)]
=2sin(x/2+π/3)
因为X属于R,所以sin(x/2+π/3)的值域必然是[-1,1],那么y的值域就是[-2,2]
分别令sin(x/2+π/3)=±1,就可以可求出x的集合.
y=sin(x/2)+√3cos(x/2)
=2[1/2sin(x/2)+√3/2 cos(x/2)]
=2[cos(π/3)sin(x/2)+sin(π/3)cos(x/2)]
=2sin(x/2+π/3)
因为X属于R,所以sin(x/2+π/3)的值域必然是[-1,1],那么y的值域就是[-2,2]
分别令sin(x/2+π/3)=±1,就可以可求出x的集合.