证:∵EF⊥AC
∴∠EFP=∠C=90°,∠AFE=90°
∵BP=PE,∠EPF=∠BPC
∴△EPF全等△BPC
∴FP=CP=CF/2
∵AE⊥AD
∴∠CAD+∠EAF=∠DAE=90°
∵∠CAD+∠ADC=90°
∴∠EAF=∠ADC
∵AD=AE,∠AFE=∠C=90°
∴△ADC全等△EAF
∴AF=CD=BC/2
∵AC=BC
∴AF=CF=AC/2,FP=CP=AC/4
∴AP/CP=(AF+FP)/CP=3
证:∵EF⊥AC
∴∠EFP=∠C=90°,∠AFE=90°
∵BP=PE,∠EPF=∠BPC
∴△EPF全等△BPC
∴FP=CP=CF/2
∵AE⊥AD
∴∠CAD+∠EAF=∠DAE=90°
∵∠CAD+∠ADC=90°
∴∠EAF=∠ADC
∵AD=AE,∠AFE=∠C=90°
∴△ADC全等△EAF
∴AF=CD=BC/2
∵AC=BC
∴AF=CF=AC/2,FP=CP=AC/4
∴AP/CP=(AF+FP)/CP=3