x+y=0!
两边分别乘[(1+x^2)^(1/2)+x]与[(1+y^2)^(1/2)+y]可得两式:
(1+y^2)^(1/2)-y=(1+x^2)^(1/2)+x
(1+x^2)^(1/2)-x=(1+y^2)^(1/2)+y
两式相加:-(x+y)=x+y
所以:x+y=0
x+y=0!
两边分别乘[(1+x^2)^(1/2)+x]与[(1+y^2)^(1/2)+y]可得两式:
(1+y^2)^(1/2)-y=(1+x^2)^(1/2)+x
(1+x^2)^(1/2)-x=(1+y^2)^(1/2)+y
两式相加:-(x+y)=x+y
所以:x+y=0