(1)函数y=f(x)的函数与x 轴的任意两个相邻交点间的距离为π/2,
说明函数y=f(x)的半周期为π/w=π/2,故w=2,
直线x=π/6是函数y=f(x)图像的一条对称轴,
说明2×π/6+Ф=π/2+kπ,k∈Z,
可得Ф=π/6,
所以,f(x)=sin(2x+π/6);
(2)根据(1)的结果,结合题意可得
h(x)=f(x)+g(x)
=sin(2x+π/6)+2sin²x
=(√3/2)sin2x+(1/2)cos2x+1+cos2x
=(√3/2)sin2x+(3/2)cos2x+1
=√3[(1/2)sin2x+(√3/2)cos2x]+1
=√3sin(2x+π/3)+1
其单调增区间为
-π/2+2kπ<2x+π/3<π/2+2kπ,k∈Z
即
-5π/12+kπ<x<π/12+kπ,k∈Z