设A=
1 -1 -1 -1
-1 1 -1 -1
-1 -1 1 -1
-1 -1 -1 1
计算得
A^2 =
4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4
= 4E.
所以当n=2k时有
A^n = (A^2)^k = (4E)^k = 2^2k E
当n=2k+1时有
A^n = A(A^2)^k = 2^2k A
设A=
1 -1 -1 -1
-1 1 -1 -1
-1 -1 1 -1
-1 -1 -1 1
计算得
A^2 =
4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4
= 4E.
所以当n=2k时有
A^n = (A^2)^k = (4E)^k = 2^2k E
当n=2k+1时有
A^n = A(A^2)^k = 2^2k A