(1)已知z为虚数, z+ 9 z-2 为实数,若z-2为纯虚数,求虚数z;

1个回答

  • (1)z为虚数且z-2为纯虚数,可设z=2+bi(b∈R,b≠0)

    又 z+

    9

    z-2 =2+bi+

    9

    bi =2+bi-

    9

    b i=2+(b-

    9

    b )i为实数,

    所以b-

    9

    b =0,b=±3

    所以z=2±3i.

    (2)设z=a+bi(a,b∈R,)

    z-2

    z+2 =

    (a-2)+bi

    (a+2)+bi =

    ( a 2 + b 2 -4)+4bi

    (a+2) 2 + b 2

    由于

    z-2

    z+2 为纯虚数,所以

    ( a 2 + b 2 -4)

    (a+2) 2 + b 2 =0

    4b

    (a+2) 2 + b 2 ≠0

    即a 2+b 2=4,且b≠0.①

    ∴M=|w+1| 2+|w-1| 2=(a+1) 2+(b+1) 2+(a-1) 2+(b+1) 2

    =2(a 2+b 2)+4b+4

    =12+4b

    由①可得出b∈[-2,2]且b≠0,所以b的最大值为2,从而M的最大值为20.

    此时a=0,w=z+i=2i+i=3i.