∫dx/(sinx+tanx)=?

1个回答

  • ∫[1/(sinx+tanx)]dx

    =∫[cosx/(sinxcosx+sinx)]dx=∫{cosx/[sinx(1+cosx)]}dx

    =∫{sinxcosx/[(sinx)^2(1+cosx)]}dx

    =-∫{cosx/[(sinx)^2(1+cosx)]}d(cosx).

    令cosx=u,则(sinx)^2=1-u^2.

    ∴∫[1/(sinx+tanx)]dx

    =-∫{u/[(1-u^2)(1+u)]}du

    =-∫{(1+u-1)/[(1-u^2)(1+u)]}du

    =-∫[1/(1-u^2)]du+∫{1/[(1-u^2)(1+u)]}du

    =-∫[1/(1-u^2)]du+(1/2)∫{(1+u+1-u)/[(1-u^2)(1+u)]}du

    =-∫[1/(1-u^2)]du+(1/2)∫[1/(1-u^2)]du+(1/2)∫[1/(1+u)^2]du

    =-(1/2)∫[1/(1-u^2)]du+(1/2)∫[1/(1+u)^2]du

    =-(1/4)∫[(1+u+1-u)/(1-u^2)]du-(1/2)[1/(1+u)]

    =-(1/4)∫[1/(1-u)]du-(1/4)∫[1/(1+u)]du-(1/2)[1/(1+cosx)]

    =(1/4)ln|1-u|-(1/4)ln|1+u|-(1/2)(1-cosx)/[1-(cosx)^2]+C

    =(1/4)ln[(1-cosx)/(1+cosx)]-(1/2)(1-cosx)/(sinx)^2+C

    =(1/4)ln[(1-cosx)^2/(sinx)^2]-(1/2)(1-cosx)/(sinx)^2+C

    =(1/2)ln[(1-cosx)/sinx]-1/[2(sinx)^2]+cosx/[2(sinx)^2]+C

    =-1/[2(sinx)^2]+cosx/[2(sinx)^2]+(1/2)ln(secx-cotx)+C.

    注:你所给出的答案是错误的.也许是你不小心造成的,请认真核查.