(an)^2=an*a(n-1)+2[a(n-1)]^2
两边都减去[a(n-1)]^2得
(an)^2-a(n-1)]^2=an*a(n-1)+[a(n-1)]^2
[an+a(n-1)]*[an-a(n-1)]=a(n-1)[an+a(n-1)]
∵[an+a(n-1)]>0
∴an-a(n-1)=a(n-1)
这下会了吧
(an)^2=an*a(n-1)+2[a(n-1)]^2
两边都减去[a(n-1)]^2得
(an)^2-a(n-1)]^2=an*a(n-1)+[a(n-1)]^2
[an+a(n-1)]*[an-a(n-1)]=a(n-1)[an+a(n-1)]
∵[an+a(n-1)]>0
∴an-a(n-1)=a(n-1)
这下会了吧