(1)∵当n≥2时,S n+1+4S n-1=5S n,
∴S n+1-S n=4(S n-S n-1).∴a n+1=4a n.
∵a 1=2,a 2=8,∴a 2=4a 1.
∴数列{a n}是以a 1=2为首项,公比为4的等比数列.
∴ a n =2• 4 n-1 = 2 2n-1 .
(2)由(1)得:log 2a n=log 22 2n-1=2n-1,
∴T n=log 2a 1+log 2a 2+…+log 2a n=1+3+…+(2n-1)=
n(1+2n-1)
2 =n 2.
(3) (1-
1
T 2 )(1-
1
T 3 )•…•(1-
1
T n ) = (1-
1
2 2 )(1-
1
3 2 )•…•(1-
1
n 2 )
=
2 2 -1
2 2 •
3 2 -1
3 2 •
4 2 -1
4 2 •…•
n 2 -1
n 2 =
1•3•2•4•3•5•…•(n-1)(n+1)
2 2 • 3 2 • 4 2 •…• n 2 =
n+1
2n .
令
n+1
2n >
1010
2013 ,解得: n<287
4
7 .
故满足条件的最大正整数n的值为287.