设数列{a n }的前n项和为S n ,已知a 1 =2,a 2 =8,S n+1 +4S n-1 =5S n (n≥2

1个回答

  • (1)∵当n≥2时,S n+1+4S n-1=5S n

    ∴S n+1-S n=4(S n-S n-1).∴a n+1=4a n

    ∵a 1=2,a 2=8,∴a 2=4a 1

    ∴数列{a n}是以a 1=2为首项,公比为4的等比数列.

    ∴ a n =2• 4 n-1 = 2 2n-1 .

    (2)由(1)得:log 2a n=log 22 2n-1=2n-1,

    ∴T n=log 2a 1+log 2a 2+…+log 2a n=1+3+…+(2n-1)=

    n(1+2n-1)

    2 =n 2

    (3) (1-

    1

    T 2 )(1-

    1

    T 3 )•…•(1-

    1

    T n ) = (1-

    1

    2 2 )(1-

    1

    3 2 )•…•(1-

    1

    n 2 )

    =

    2 2 -1

    2 2 •

    3 2 -1

    3 2 •

    4 2 -1

    4 2 •…•

    n 2 -1

    n 2 =

    1•3•2•4•3•5•…•(n-1)(n+1)

    2 2 • 3 2 • 4 2 •…• n 2 =

    n+1

    2n .

    n+1

    2n >

    1010

    2013 ,解得: n<287

    4

    7 .

    故满足条件的最大正整数n的值为287.