第一个问题:
∵ABCD是正方形,∴AB=DA、AB⊥AD.
∵BF⊥AF、AB⊥AD,∴∠ABF=∠DAE(同是∠BAF的余角),
又AB=DA、∠AFB=∠DFA=90°,∴△ABF≌△DAE,∴BF=AE、AF=DE.
显然有:AF-AE=EF,∴DE-BF=EF.
第二个问题:此时有:DE+BF=EF.[作图略]
∵AB⊥AD、BF⊥AF,∴∠FBA=∠EAD(同是∠BAF的余角),
又AB=DA、∠AFB=∠DEA=90°,∴△ABF≌△DAE,∴BF=AF、AF=DE.
显然有:AF+AE=EF,∴DE+BF=EF.