1/(1×2)+1/(2×3)+1/(3×4)+...+1/(99×100)
=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-1/100
=99/100
提示:
一般的:1/n-1/(n+1)=[(n+1)-n]/[n(n+1)]=1/[n(n+1)]
反向即为:1/[n(n+1)]=1/n-1/(n+1)
1/(1×2)+1/(2×3)+1/(3×4)+...+1/(99×100)
=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-1/100
=99/100
提示:
一般的:1/n-1/(n+1)=[(n+1)-n]/[n(n+1)]=1/[n(n+1)]
反向即为:1/[n(n+1)]=1/n-1/(n+1)