已知数列{an}的通项公式是an=n^2,{bn}的首项为3,前n项和为Sn,(7n+1)/6=(an+1+..a2n)

1个回答

  • (1)

    (1^2+...+n^2=n(n+1)(2n+1)/6 这是基本结论)

    由(7n+1)/6=[a(n+1)+...+a(2n)]/S(n)

    S(n)=[6/(7n+1)][a(n+1)+...+a(2n)]

    S(n)=[6/(7n+1)]{[1^2+...+(2n)^2]-(1^2+...+n^2)}

    S(n)=[6/(7n+1)][(2n)(2n+1)(4n+1)/6-n(n+1)(2n+1)/6]

    S(n)=[1/(7n+1)](7n^2+n)(2n+1)

    S(n)=2n^2+n

    ∴b(n)=S(n)-S(n-1)=4n-1(n>1)

    b(1)=S(1)=3满足4n-1

    ∴b(n)=S(n)-S(n-1)=4n-1

    (2)证明:

    2^[-b(n)]/2^[-b(n-1)]

    =2^[b(n-1)-b(n)]

    =2^(-4)

    =1/16

    ∴数列{2^[-b(n)]}是等比数列