设OA OB夹角为θ
OA•OB = |OA|*|OB|*cosθ=a1a2+b1b2
S²= (|OA||OB|sinθ)²
=|OA|²|OB|²(1-cos²θ)
=|OA|²|OB|²-|OA|²|OB|²cos²θ
=(a1²+b1²)(a2²+b2²)-(a1a2+b1b2)²
=(a1b2-a2b1)²
所以S=|a1b2-a2b1|
设OA OB夹角为θ
OA•OB = |OA|*|OB|*cosθ=a1a2+b1b2
S²= (|OA||OB|sinθ)²
=|OA|²|OB|²(1-cos²θ)
=|OA|²|OB|²-|OA|²|OB|²cos²θ
=(a1²+b1²)(a2²+b2²)-(a1a2+b1b2)²
=(a1b2-a2b1)²
所以S=|a1b2-a2b1|