下面用a代替θ
由韦达定理
sina+cosa=(√3+1)/2
sinacosa=m/2
(sina)^2+(cosa)^2=1
所以(sina+cosa)^2-2sincosa=1
(2+√3)/2-m=1
m=√3/2
2x^2-(√3+1)x+√3/2=0
(x-√3/2)(2x-1)=0
x=√3/2,x=1/2
若sina=√3/2,cosa=1/2,则a=π/3
若sina=1/2,cosa=√3/2,则a=π/6
若sina=√3/2,cosa=1/2,则tana=√3,cota=1/√3
(sina)^2/(sina-cot)+cosa/(1-tan)=(5√3-1)/4
若sina=1/2,cosa=√3/2,则tana=1/√3,cota=√3
(sina)^2/(sina-cot)+cosa/(1-tan)=(61√3+65)/92