解题思路:结合题意,当m≤0时显然不成立;当m>0时,再依据对称轴进行分类,综合可得答案.
①当m<0时,f(x)为开口向下的抛物线,显然不成立;
②当m=0时,因f(x)=-6x+4,g(x)=0,也不成立;
③当m>0时,f(x)为开口向上的抛物线,恒过点(0,4)
若−
b
2a=
3−m
m<0时,(如图1)
只要△=4(3-m)2-16m=4(m-1)(m-9)<0即可,解得1<m<9.
若−
b
2a=
3−m
m≥0,即0<m≤3时结论显然成立,(如图2);
综上可得实数m的取值范围是:(0,9)
故答案为:(0,9).
点评:
本题考点: 函数的零点.
考点点评: 本题为二次函数根的分布问题,涉及恒成立问题,正确分类是解决问题的关键,属中档题.