sina+cosb=√2/2
cosb=√2/2-sina
令y=cosa+cosb
y=cosa+√2/2-sina
=√2(√2/2cosa-√2/2sina)+√2/2
=√2cos(a+π/4)+√2/2
因为cos(a+π/4)∈[-1,1]
所以y最大值=√2+√2/2=3√2/2
y最小值=-√2+√2/2=-√2/2
y∈[3√2/2,-√2/2]
sina+cosb=√2/2
cosb=√2/2-sina
令y=cosa+cosb
y=cosa+√2/2-sina
=√2(√2/2cosa-√2/2sina)+√2/2
=√2cos(a+π/4)+√2/2
因为cos(a+π/4)∈[-1,1]
所以y最大值=√2+√2/2=3√2/2
y最小值=-√2+√2/2=-√2/2
y∈[3√2/2,-√2/2]