已知函数f(x)=2cosx/2(根号3cosx/2-sinx/2)在三角形ABC中c=1f(c)=根3+1面积=根3/

1个回答

  • 已知函数f(x)=2cosx/2(根号3cosx/2-sinx/2)在三角形ABC中c=1f(c)=根3+1面积=根3/2求sinA+sinB

    f(c)=2cosc/2(√3cosc/2-sinc/2)

    =2√3(cosc/2)²-2(sinc/2)(cosc/2)

    =2√3*(cosc+1)/2-sinc

    =√3cosc+√3-sinc

    =√3-(sinc-√3cosc)

    =√3-2sin(c-π/3)

    =√3+1

    √3-2sin(c-π/3)=√3+1

    -2sin(c-π/3)=1

    sin(c-π/3)=-1/2

    c-π/3=-π/6

    c=π/6

    S=(ab*sinC)/2=ab/4=√3/2

    ab=2√3

    cosC=(a²+b²-c²)/2ab

    √3/2=(a²+b²-1)/2*2√3

    a²+b²=7

    a²+2ab+b²=7+2√3

    (a+b)²=7+2√3

    a+b=√(7+2√3)

    sinA+sinB=(asinC)/c+(bsinC)/c=(a+b)/2=√(7+2√3)/2