f(x)=2sin(2wx+π/3)(w>0),T=2π/2w=π/w=π,w=1,f(x)=2sin(2x+π/3),
h(x)=g(x)-f(x)=cos^2(2x+π/3)-2sin(2x+π/3)=1-sin^2(2x+π/3)-2sin(2x+π/3)
=-sin^2(2x+π/3)-2sin(2x+π/3)+1=-[sin(2x+π/3)+1]^2+2,
,x属于[0,π/2],0=
f(x)=2sin(2wx+π/3)(w>0),T=2π/2w=π/w=π,w=1,f(x)=2sin(2x+π/3),
h(x)=g(x)-f(x)=cos^2(2x+π/3)-2sin(2x+π/3)=1-sin^2(2x+π/3)-2sin(2x+π/3)
=-sin^2(2x+π/3)-2sin(2x+π/3)+1=-[sin(2x+π/3)+1]^2+2,
,x属于[0,π/2],0=